首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach
  • 本地全文:下载
  • 作者:Thanapong Champahom ; Sajjakaj Jomnonkwao ; Chinnakrit Banyong
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:18
  • 页码:10086
  • DOI:10.3390/su131810086
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Currently, research on the development of crash models in terms of crash frequency on road segments and crash severity applies the principles of spatial analysis and heterogeneity due to the methods’ suitability compared with traditional models. This study focuses on crash severity and frequency in Thailand. Moreover, this study aims to understand crash frequency and fatality. The result of the intra-class correlation coefficient found that the spatial approach should analyze the data. The crash frequency model’s best fit is a spatial zero-inflated negative binomial model (SZINB). The results of the random parameters of SZINB are insignificant, except for the intercept. The crash frequency model’s significant variables include the length of the segment and average annual traffic volume for the fixed parameters. Conversely, the study finds that the best fit model of crash severity is a logistic regression with spatial correlations. The variances of random effect are significant such as the intersection, sideswipe crash, and head-on crash. Meanwhile, the fixed-effect variables significant to fatality risk include motorcycles, gender, non-use of safety equipment, and nighttime collision. The paper proposes a policy applicable to agencies responsible for driver training, law enforcement, and those involved in crash-reduction campaigns.
国家哲学社会科学文献中心版权所有