期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2021
卷号:10
期号:9
页码:605
DOI:10.3390/ijgi10090605
语种:English
出版社:MDPI AG
摘要:Intelligent geoprocessing relies heavily on formalized parameter constraints of geoprocessing tools to validate the input data and to further ensure the robustness and reliability of geoprocessing. However, existing methods developed to formalize parameter constraints are either designed based on ill-suited assumptions, which may not correctly identify the invalid parameter inputs situation, or are inefficient to use. This paper proposes a novel method to formalize the parameter constraints of geoprocessing tools, based on a high-level and standard constraint language (i.e., SHACL) and geoprocessing ontologies, under the guidance of a systematic classification of parameter constraints. An application case and a heuristic evaluation were conducted to demonstrate and evaluate the effectiveness and usability of the proposed method. The results show that the proposed method is not only comparatively easier and more efficient than existing methods but also covers more types of parameter constraints, for example, the application-context-matching constraints that have been ignored by existing methods.