首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Properties of Cement-Based Materials Containing Cathode-Ray Tube (CRT) Glass Waste as Fine Aggregates—A Review
  • 本地全文:下载
  • 作者:Jad Bawab ; Jamal Khatib ; Hilal El-Hassan
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:20
  • 页码:11529
  • DOI:10.3390/su132011529
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Among many alternatives to replace sand in cement-based materials, cathode-ray tube (CRT) glass emerges as a suitable replacement for many reasons. This paper provides a state-of-the-art review on the use of cathode-ray tube (CRT) glass waste in cement-based concrete and mortar in accordance with PRISMA guidelines. The new aspects of the research are the literature coverage up to 2021 which would make it distinct from other articles. This review would act as a catalyst to use CRT glass waste in concrete mixtures. A total of 61 papers from literature were analyzed with emphasis on the fresh, mechanical, and durability performance of cement-based materials containing CRT glass waste as fine aggregates. The analysis revealed that the majority of the studies agreed that replacing sand with CRT glass waste increased the consistency where the low permeability of the CRT glass caused this effect. Strength of cement-based materials, on the other hand, decreased due to the weaker bond between the cement paste and the aggregates. The low water absorption of the CRT glass defined its effect on the durability properties of cement-based materials, such as drying shrinkage and water absorption capacity, leading to an improved performance. In addition, CRT glass waste activated the alkali-silica reaction in cement-based materials causing undesirable expansion. Additionally, several investigations proposed solutions to mitigate the lead leaching associated with the lead content found in the CRT glass. In general, it was assessed that CRT glass waste could be a valid component in the production of sustainable cement-based materials, especially for radiation shielding applications. The recommendations for future research are also suggested.
国家哲学社会科学文献中心版权所有