首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental Observations in an Arid Environment
  • 本地全文:下载
  • 作者:Saeid Gharechelou ; Ryutaro Tateishi ; Josaphat Tetuko Sri Sumantyo
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:10
  • 页码:711
  • DOI:10.3390/ijgi10100711
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Soil moisture is a critical component for Earth science studies, and Synthetic Aperture Radar (SAR) data have high potential for retrieving soil moisture using backscattering models. In this study, polarimetric SAR (PALSAR: Phased Array type L-band Synthetic Aperture Radar) data and polarimetric decompositions including span, entropy/H/alpha, and anisotropy, in combination with surface properties resulting from field and laboratory measurements, are used to categorize the natural surface condition and discriminate the backscatter parameter in the test site for applying the inversion soil moisture retrieval. The work aims to introduce the better of two examined models in the research for soil moisture retrieval over the bare land and sparse vegetation in arid regions. After soil moisture retrieval using the two different models, the results of comparison and validation by field measurement of soil moisture have shown that the Oh model has a more realiable accuracy for soil moisture mapping, although it was very difficult to find the best model due to different characteristics in land cover. It seems the inversion model, with the field observation and polarimetric SAR data, has a good potential for extracting surface natural conditions such as surface roughness and soil moisture; however, over- and under-estimation are observed due to land cover variability. The estimation of accurate roughness and moisture data for each type of land cover can increase the accuracy of the results.
国家哲学社会科学文献中心版权所有