首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models
  • 本地全文:下载
  • 作者:Annan Yang ; Chunmei Wang ; Guowei Pang
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:10
  • 页码:680
  • DOI:10.3390/ijgi10100680
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Gully erosion is the most severe type of water erosion and is a major land degradation process. Gully erosion susceptibility mapping (GESM)’s efficiency and interpretability remains a challenge, especially in complex terrain areas. In this study, a WoE-MLC model was used to solve the above problem, which combines machine learning classification algorithms and the statistical weight of evidence (WoE) model in the Loess Plateau. The three machine learning (ML) algorithms utilized in this research were random forest (RF), gradient boosted decision trees (GBDT), and extreme gradient boosting (XGBoost). The results showed that: (1) GESM were well predicted by combining both machine learning regression models and WoE-MLC models, with the area under the curve (AUC) values both greater than 0.92, and the latter was more computationally efficient and interpretable; (2) The XGBoost algorithm was more efficient in GESM than the other two algorithms, with the strongest generalization ability and best performance in avoiding overfitting (averaged AUC = 0.947), followed by the RF algorithm (averaged AUC = 0.944), and GBDT algorithm (averaged AUC = 0.938); and (3) slope gradient, land use, and altitude were the main factors for GESM. This study may provide a possible method for gully erosion susceptibility mapping at large scale.
国家哲学社会科学文献中心版权所有