首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Recommendation Algorithm Using Clustering-Based UPCSim (CB-UPCSim)
  • 本地全文:下载
  • 作者:Triyanna Widiyaningtyas ; Indriana Hidayah ; Teguh Bharata Adji
  • 期刊名称:Computers
  • 电子版ISSN:2073-431X
  • 出版年度:2021
  • 卷号:10
  • 期号:10
  • 页码:123
  • DOI:10.3390/computers10100123
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:One of the well-known recommendation systems is memory-based collaborative filtering that utilizes similarity metrics. Recently, the similarity metrics have taken into account the user rating and user behavior scores. The user behavior score indicates the user preference in each product type (genre). The added user behavior score to the similarity metric results in more complex computation. To reduce the complex computation, we combined the clustering method and user behavior score-based similarity. The clustering method applies <i>k</i>-means clustering by determination of the number of clusters using the Silhouette Coefficient. Whereas the user behavior score-based similarity utilizes User Profile Correlation-based Similarity (UPCSim). The experimental results with the MovieLens 100k dataset showed a faster computation time of 4.16 s. In addition, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values decreased by 1.88% and 1.46% compared to the baseline algorithm.
国家哲学社会科学文献中心版权所有