摘要:We present the design, fabrication, and experimental characterization of microsystems achieving large and stepwise discrete displacements. The systems consist of electrostatic bending plate actuators linked in a chain with increasing electrode gaps to allow a stepwise system displacement. A derived analytic transfer function permits to evaluate the influence of the system components on both the total and the stepwise system displacement. Based on calculation and simulation results, systems featuring 5, 8, 10, 13, and 16 steps are modeled and fabricated using a dicing-free SOI-fabrication process. During experimental voltage- and time-dependent system characterization, the minimum switching speed of the electrostatic actuators is 1 ms. Based on the guiding spring stiffness and the switching time, step-by-step and collective activations of the microsystems are performed and the system properties are derived. Furthermore, we analyze the influence of the number of steps on the total system displacement and present 16-step systems with a total maximum displacement of 230.7 ± 0.9 µm at 54 V.