摘要:Abstract Study region The study region encompasses the Upper Colorado River Basin (UCRB), which provides water for 40 million people and is a vital part of the water supply in the western U.S. Study focus Groundwater and surface water can be considered a single water resource and thus it is important to understand groundwater contributions to streamflow, or baseflow, within a region. Previously, quantification of baseflow using chemical mass balance at large numbers of sites was not possible because of data limitations. A new method using regression-derived daily specific conductance values with conductivity mass balance hydrograph separation allows for baseflow estimation at sites across large regions. This method was applied to estimate baseflow discharge at 229 sites across the UCRB. Subsequently, climate, soil, topography, and land cover characteristics were statistically evaluated using principal component analysis (PCA) to determine their influence on baseflow discharge. New hydrological insights for the region Results suggest that approximately half of the streamflow in the {UCRB} is baseflow derived from groundwater discharge to streams. Higher baseflow yields typically occur in upper elevation areas of the UCRB. {PCA} identified precipitation, snow, sand content of soils, elevation, land surface slope, percent grasslands, and percent natural barren lands as being positively correlated with baseflow yield; whereas temperature, potential evapotranspiration, silt and clay content of soils, percent agriculture, and percent shrublands were negatively correlated with baseflow yield.
关键词:Regional baseflow; Specific conductance; Groundwater; Basin characteristics; Snowmelt dominated watershed