摘要:The leaf, stem, and root of wild sesame with eco-physiological functions of water and mineral sorption were targeted for water treatment. Morphometric properties of the plant sections were investigated by light microscopy. Structural and surface characteristics of pulverized samples were studied by thermogravimetry (TGA), Raman spectroscopy, Brunauer–Emmett–Teller (BET), and Scanning electron microscopy. Wettability and sorption potentials were studied by sessile drop analysis, while a methylene blue dye polluted water treated with the plant’s sorbents was assessed by UV–Vis spectroscopy. The presence of parenchyma cells, trichomes, vessels, fibres, cellulose, lignin, and other pore-containing structures was confirmed. The stem and root biomasses possessed comparatively higher pore sizes (0.011 and 0.124 µm, respectively), surface energy (33.32 and 31.8 mN/m), and dispersive components (32.45 and 31.65 mN/m). The leaf was high in polar components and had a biomass surface area of 3.19 m<sup>2</sup>/g. Water treated with the root and stem sorbents gave the lowest dye concentration (0.19 mg/L and 0.20 mg/L, respectively) in treated effluent at 120 mins. It was noted that eco-physiological properties informed water purification potentials of the sampled biomasses and could be used for bioprospecting of useful plant materials for water purification. This study established that functional components of plants, porous characteristics, and surface properties of the materials studied are important factors when considering plant sorbents for water purification.