首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks
  • 本地全文:下载
  • 作者:Daniel Biner ; Vlad Hasmatuchi ; Laurent Rapillard
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:19
  • 页码:10717
  • DOI:10.3390/su131910717
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:To enhance the sustainability of water supply systems, the development of new technologies for micro scale hydropower remains an active field of research. The present paper deals with the implementation of a new micro-hydroelectric system for drinking water facilities, targeting a gross capacity between 5 kW and 25 kW. A counter-rotating microturbine forms the core element of the energy recovery system. The modular in-line technology is supposed to require low capital expenditure, targeting profitability within 10 years. One stage of the DuoTurbo microturbine is composed of two axial counter-rotating runners, each one featured with a wet permanent magnet rim generator with independent speed regulation. This compact mechanical design facilitates the integration into existing drinking water installations. A first DuoTurbo product prototype is developed by means of a Computational Fluid Dynamics based hydraulic design along with laboratory tests to assess system efficiency and characteristics. The agreements between simulated and measured hydraulic characteristics with absolute errors widely below 5% validate the design approach to a large extent. The developed product prototype provides a maximum electrical power of 6.5 kW at a maximum hydraulic head of 75 m, reaching a hydroelectric peak efficiency of 59%. In 2019, a DuoTurbo pilot was commissioned at a drinking water facility to assess its long-term behavior and thus, to validate advanced technology readiness levels. To the best of the authors knowledge, it is the first implementation of a counter-rotating microturbine with independent runner speed regulation and wet rim generators in a real-world drinking water facility. A complete year of operation is monitored without showing significant drifts of efficiency and vibration. The demonstration of the system in operational environment at pre-commercial state is validated that can be attributed to a technology readiness level of 7. The overall results of this study are promising regarding further industrialization steps and potential broad-scale applicability of the DuoTurbo microturbine in the drinking water industry.
  • 关键词:counter-rotating microturbine; drinking water facilities; system engineering; CFD; performance measurements; prototype endurance tests
国家哲学社会科学文献中心版权所有