首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A low‐cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference
  • 本地全文:下载
  • 作者:HyunJin Kim
  • 期刊名称:ETRI Journal
  • 印刷版ISSN:1225-6463
  • 电子版ISSN:2233-7326
  • 出版年度:2021
  • 卷号:43
  • 期号:4
  • 页码:684-693
  • DOI:10.4218/etrij.2020-0370
  • 语种:English
  • 出版社:Electronics and Telecommunications Research Institute
  • 摘要:This paper presents a low‐cost two‐stage approximate multiplier for bfloat16 (brain floating‐point) data processing. For cost‐efficient approximate multiplication, the first stage implements Mitchell's algorithm that performs the approximate multiplication using only two adders. The second stage adopts the exact multiplication to compensate for the error from the first stage by multiplying error terms and adding its truncated result to the final output. In our design, the low‐cost multiplications in both stages can reduce hardware costs significantly and provide low relative errors by compensating for the error from the first stage. We apply our approximate multiplier to the convolutional neural network (CNN) inferences, which shows small accuracy drops with well‐known pre‐trained models for the ImageNet database. Therefore, our design allows low‐cost CNN inference systems with high test accuracy.
国家哲学社会科学文献中心版权所有