首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:On the relevance of clustering strategies for collaborative prognostics
  • 本地全文:下载
  • 作者:Matteo Balbi ; Laura Cattaneo ; Domenico Daniele Nucera
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:1
  • 页码:37-42
  • DOI:10.1016/j.ifacol.2021.08.004
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe innovative concept of Social Internet of Industrial Things is opening a promising perspective for collaborative prognostics in order to improve maintenance and operational policies. Given this context, the present work studies the exploitation of historical and collaborative information for on-line prognostic assessment. In particular, while aiming at a cost-effective prognostic algorithm, with an efficient use of the available data and a proper prediction accuracy, the work remarks the relevance of an optimized clustering strategy for the selection of the useful information.
  • 关键词:KeywordsCollaborative prognosticsdata-driven prognosticsclusteringRUL prediction
国家哲学社会科学文献中心版权所有