首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Autonomous, low-cost sensor module for fill level measurement for a self-learning electronic Kanban system
  • 本地全文:下载
  • 作者:Markus Kreutz ; Abderrahim Ait Alla ; Michael Lütjen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:1
  • 页码:623-628
  • DOI:10.1016/j.ifacol.2021.08.173
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn the era of digitalization, electronic Kanban (e-Kanban) extends the traditional Kanban with additional data and information sharing that allows for more flexible and optimized inventory planning. The lack of automated fill level measurements for load carriers still hinders the full automation of the process. Our aim is to develop a self-learning e-Kanban system that automatically triggers replenishment orders using machine learning and data from low cost, autonomous sensor modules that measure the fill level of load carriers. This paper explains the concept and presents a first version of the mentioned sensor module that consists of an Intel Realsense sensor and an NVIDIA Jetson Nano. An evaluation is presented as well using small load carriers, which shows the suitability of the proposed method.
  • 关键词:Keywordse-Kanbanfill level measurementdigitalizationimage processingrange sensing
国家哲学社会科学文献中心版权所有