首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Human-inspired strategies to solve complex joint tasks in multi agent systems
  • 本地全文:下载
  • 作者:Fabrizia Auletta ; Mario di Bernardo ; Michael J. Richardson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:17
  • 页码:105-110
  • DOI:10.1016/j.ifacol.2021.11.033
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we propose a methodology to integrate human expertise with effective control laws to drive artificial agents in a complex joint task. We use Supervised Machine Learning to derive human-inspired strategies that succeed in task performance independently from the operating conditions of the samples provided in the training phase. Numerical simulations validate the efficiency of the proposed human-inspired strategies against simpler yet computationally expensive rule-based strategies.
  • 关键词:KeywordsNonlinear Time SeriesIdentificationMulti-agent SystemsMulti-agent CoordinationHerding problem
国家哲学社会科学文献中心版权所有