首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Symmetric Prior for Multinomial Probit Models
  • 本地全文:下载
  • 作者:Lane F. Burgette ; David Puelz ; P. Richard Hahn
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2021
  • 卷号:16
  • 期号:3
  • 页码:991-1008
  • DOI:10.1214/20-BA1233
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Fitted probabilities from widely used Bayesian multinomial probit models can depend strongly on the choice of a base category, which is used to uniquely identify the parameters of the model. This paper proposes a novel identification strategy, and associated prior distribution for the model parameters, that renders the prior symmetric with respect to relabeling the outcome categories. The new prior permits an efficient Gibbs algorithm that samples rank-deficient covariance matrices without resorting to Metropolis-Hastings updates.
  • 关键词:base category; discrete choice; Gibbs sampler; sum-to-zero identification
国家哲学社会科学文献中心版权所有