首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Nonparametric Bayesian Modeling and Estimation of Spatial Correlation Functions for Global Data
  • 本地全文:下载
  • 作者:Emilio Porcu ; Pier Giovanni Bissiri ; Felipe Tagle
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2021
  • 卷号:16
  • 期号:3
  • 页码:845-873
  • DOI:10.1214/20-BA1228
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We provide a nonparametric spectral approach to the modeling of correlation functions on spheres. The sequence of Schoenberg coefficients and their associated covariance functions are treated as random rather than assuming a parametric form. We propose a stick-breaking representation for the spectrum, and show that such a choice spans the support of the class of geodesically isotropic covariance functions under uniform convergence. Further, we examine the first order properties of such representation, from which geometric properties can be inferred, in terms of Hölder continuity, of the associated Gaussian random field. The properties of the posterior, in terms of existence, uniqueness, and Lipschitz continuity, are then inspected. Our findings are validated with MCMC simulations and illustrated using a global data set on surface temperatures.
  • 关键词:correlation function; great-circle distance; mean square differentiability; nonparametric Bayes; spheres
国家哲学社会科学文献中心版权所有