首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Large deviations, a phase transition, and logarithmic Sobolev inequalities in the block spin Potts model
  • 本地全文:下载
  • 作者:Holger Knöpfel ; Matthias Löwe ; Holger Sambale
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2021
  • 卷号:26
  • 页码:1-14
  • DOI:10.1214/21-ECP397
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We introduce and analyze a generalization of the blocks spin Ising (Curie-Weiss) models that were discussed in a number of recent articles. In these block spin models each spin in one of s blocks can take one of a finite number of q≥3 values or colors, hence the name block spin Potts model. We prove a large deviation principle for the percentage of spins of a certain color in a certain block. These values are represented in an s×q matrix. We show that for uniform block sizes there is a phase transition. In some regime the only equilibrium is the uniform distribution of all colors in all blocks, while in other parameter regimes there is one predominant color, and this is the same color with the same frequency for all blocks. Finally, we establish log-Sobolev-type inequalities for the block spin Potts model.
  • 关键词:60F10; 82B20; block spin Potts model; large deviation principle; Logarithmic Sobolev inequality; phase transition
国家哲学社会科学文献中心版权所有