首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:k-cut model for the Brownian continuum random tree
  • 本地全文:下载
  • 作者:Minmin Wang
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2021
  • 卷号:26
  • 页码:1-11
  • DOI:10.1214/21-ECP417
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:To model the destruction of a resilient network, Cai, Holmgren, Devroye and Skerman introduced the k-cut model on a random tree, as an extension to the classic problem of cutting down random trees. Berzunza, Cai and Holmgren later proved that the total number of cuts in the k-cut model to isolate the root of a Galton–Watson tree with a finite-variance offspring law and conditioned to have n nodes, when divided by n1−1∕2k, converges in distribution to some random variable defined on the Brownian CRT. We provide here a direct construction of the limit random variable, relying upon the Aldous–Pitman fragmentation process and a deterministic time change.
  • 关键词:60C05; 60G18; 60G55; Brownian excursion; Continuum random tree; random cut on random tree
国家哲学社会科学文献中心版权所有