首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Convergence rates for Bayesian estimation and testing in monotone regression
  • 本地全文:下载
  • 作者:Moumita Chakraborty ; Subhashis Ghosal
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:3478-3503
  • DOI:10.1214/21-EJS1861
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Shape restrictions such as monotonicity on functions often arise naturally in statistical modeling. We consider a Bayesian approach to the estimation of a monotone regression function and testing for monotonicity. We construct a prior distribution using piecewise constant functions. For estimation, a prior imposing monotonicity of the heights of these steps is sensible, but the resulting posterior is harder to analyze theoretically. We consider a “projection-posterior” approach, where a conjugate normal prior is used, but the monotonicity constraint is imposed on posterior samples by a projection map onto the space of monotone functions. We show that the resulting posterior contracts at the optimal rate n−1∕3 under the L1-metric and at a nearly optimal rate under the empirical Lp-metrics for 0关键词:Bayesian testing; Monotonicity; posterior contraction; projection-posterior
国家哲学社会科学文献中心版权所有