首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Parameter estimation for SPDEs based on discrete observations in time and space
  • 本地全文:下载
  • 作者:Florian Hildebrandt ; Mathias Trabs
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:2716-2776
  • DOI:10.1214/21-EJS1848
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Parameter estimation for a parabolic linear stochastic partial differential equation in one space dimension is studied observing the solution field on a discrete grid in a fixed bounded domain. Considering an infill asymptotic regime in both coordinates, we prove central limit theorems for realized quadratic variations based on temporal and spatial increments as well as on double increments in time and space. Resulting method of moments estimators for the diffusivity and the volatility parameter inherit the asymptotic normality and can be constructed robustly with respect to the sampling frequencies in time and space. Upper and lower bounds reveal that in general the optimal convergence rate for joint estimation of the parameters is slower than the usual parametric rate. The theoretical results are illustrated in a numerical example.
  • 关键词:central limit theorems; infill asymptotics; Optimal rate of convergence; realized quadratic variation; Stochastic partial differential equations
国家哲学社会科学文献中心版权所有