首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:On a Nadaraya-Watson estimator with two bandwidths
  • 本地全文:下载
  • 作者:Fabienne Comte ; Nicolas Marie
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:2566-2607
  • DOI:10.1214/21-EJS1849
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In a regression model, we write the Nadaraya-Watson estimator of the regression function as the quotient of two kernel estimators, and propose a bandwidth selection method for both the numerator and the denominator. We prove risk bounds for both data driven estimators and for the resulting ratio. The simulation study confirms that both estimators have good performances, compared to the ones obtained by cross-validation selection of the bandwidth. However, unexpectedly, the single-bandwidth cross-validation estimator is found to be much better than the ratio of the previous two good estimators, in the small noise context. However, the two methods have similar performances in models with large noise.
  • 关键词:62G05; 62G08; Bandwidth selection; Nonparametric kernel estimator; quotient estimator; regression model
国家哲学社会科学文献中心版权所有