首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Multivariate isotropic random fields on spheres: Nonparametric Bayesian modeling and Lp fast approximations
  • 本地全文:下载
  • 作者:Alfredo Alegría ; Pier Giovanni Bissiri ; Galatia Cleanthous
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:2360-2392
  • DOI:10.1214/21-EJS1842
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study multivariate Gaussian random fields defined over d-dimensional spheres. First, we provide a nonparametric Bayesian framework for modeling and inference on matrix-valued covariance functions. We determine the support (under the topology of uniform convergence) of the proposed random matrices, which cover the whole class of matrix-valued geodesically isotropic covariance functions on spheres. We provide a thorough inspection of the properties of the proposed model in terms of (a) first moments, (b) posterior distributions, and (c) Lipschitz continuities. We then provide an approximation method for multivariate fields on the sphere for which measures of Lp accuracy are established. Our findings are supported through simulation studies that show the rate of convergence when truncating a spectral expansion of a multivariate random field at a finite order. To illustrate the modeling framework developed in this paper, we consider a bivariate spatial data set of two 2019 NCEP/NCAR Flux Reanalyses.
  • 关键词:Bivariate climate data; Lp approximations; matrix-valued covariance function; multivariate random field; nonparametric Bayes; sphere
国家哲学社会科学文献中心版权所有