首页    期刊浏览 2025年05月01日 星期四
登录注册

文章基本信息

  • 标题:Iteratively reweighted ℓ1-penalized robust regression
  • 本地全文:下载
  • 作者:Xiaoou Pan ; Qiang Sun ; Wen-Xin Zhou
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:3287-3348
  • DOI:10.1214/21-EJS1862
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper investigates tradeoffs among optimization errors, statistical rates of convergence and the effect of heavy-tailed errors for high-dimensional robust regression with nonconvex regularization. When the additive errors in linear models have only bounded second moments, we show that iteratively reweighted ℓ1-penalized adaptive Huber regression estimator satisfies exponential deviation bounds and oracle properties, including the oracle convergence rate and variable selection consistency, under a weak beta-min condition. Computationally, we need as many as O(logs+loglogd) iterations to reach such an oracle estimator, where s and d denote the sparsity and ambient dimension, respectively. Extension to a general class of robust loss functions is also considered. Numerical studies lend strong support to our methodology and theory.
  • 关键词:62A01; 62J07; Adaptive Huber regression; convex relaxation; heavy-tailed noise; nonconvex regularization; optimization error; oracle property; oracle rate
国家哲学社会科学文献中心版权所有