首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Multicarving for high-dimensional post-selection inference
  • 本地全文:下载
  • 作者:Christoph Schultheiss ; Claude Renaux ; Peter Bühlmann
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:1695-1742
  • DOI:10.1214/21-EJS1825
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider post-selection inference for high-dimensional (generalized) linear models. Data carving from Fithian, Sun and Taylor [10] is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence, may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.
  • 关键词:Group inference; High-dimensional data; Lasso; linear model; logistic regression; sample splitting; Variable selection
国家哲学社会科学文献中心版权所有