首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Reduced rank regression with matrix projections for high-dimensional multivariate linear regression model
  • 本地全文:下载
  • 作者:Wenxing Guo ; Narayanaswamy Balakrishnan ; Mengjie Bian
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:2
  • 页码:4167-4191
  • DOI:10.1214/21-EJS1895
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this work, we incorporate matrix projections into the reduced rank regression method, and then develop reduced rank regression estimators based on random projection and orthogonal projection in high-dimensional multivariate linear regression model. We propose a consistent estimator of the rank of the coefficient matrix and achieve prediction performance bounds for the proposed estimators based on mean squared errors. Finally, some simulation studies and a real data analysis are carried out to demonstrate that the proposed methods possess good stability, prediction performance and rank consistency compared to some other existing methods.
  • 关键词:62F30; 62H12; 62J99; Dimension reduction; High-dimensional data; ‎matrix projection; multivariate linear regression model; reduced rank regression
国家哲学社会科学文献中心版权所有