摘要:In this work, we incorporate matrix projections into the reduced rank regression method, and then develop reduced rank regression estimators based on random projection and orthogonal projection in high-dimensional multivariate linear regression model. We propose a consistent estimator of the rank of the coefficient matrix and achieve prediction performance bounds for the proposed estimators based on mean squared errors. Finally, some simulation studies and a real data analysis are carried out to demonstrate that the proposed methods possess good stability, prediction performance and rank consistency compared to some other existing methods.