摘要:Kernel ridge regression (KRR) is a well-known and popular nonparametric regression approach with many desirable properties, including minimax rate-optimality in estimating functions that belong to common reproducing kernel Hilbert spaces (RKHS). The approach, however, is computationally intensive for large data sets, due to the need to operate on a dense n×n kernel matrix, where n is the sample size. Recently, various approximation schemes for solving KRR have been considered, and some analyzed. Some approaches such as Nyström approximation and sketching have been shown to preserve the rate optimality of KRR. In this paper, we consider the simplest approximation, namely, spectrally truncating the kernel matrix to its largest r关键词:62C20; 62G08; 62G20; kernel methods; minimax estimation; Nonparametric regression; Ridge regression; spectral truncation