摘要:To reduce the spread and the effect of the COVID-19 global pandemic, non-pharmaceutical interventions have been adopted on multiple occasions by governments. In particular lockdown policies, i.e., generalized mobility restrictions, have been employed to fight the first wave of the pandemic. We analyze data reflecting mobility levels over time in Italy before, during and after the national lockdown, in order to assess some direct and indirect effects. By applying methodologies based on percolation and network science approaches, we find that the typical network characteristics, while very revealing, do not tell the whole story. In particular, the Italian mobility network during lockdown has been damaged much more than node- and edge-level metrics indicate. Additionally, many of the main Provinces of Italy are affected by the lockdown in a surprisingly similar fashion, despite their geographical and economic dissimilarity. Based on our findings we offer an approach to estimate unavailable high-resolution economic dimensions, such as real time Province-level GDP, based on easily measurable mobility information.