期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:41
DOI:10.1073/pnas.2100150118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
The role of flowers as environmental filters for bacterial communities and the provenance of bacteria in the phyllosphere are currently poorly understood. We experimentally tested the effect of induced variation in soil communities on the microbiota of plant organs. We identified soil-derived bacteria in the phyllosphere and show a strong convergence of floral communities with an enrichment of members of the Burkholderiaceae family. This finding highlights a potential role of the flower in shaping the interaction between plants and a bacterial family known to harbor both plant pathogens and growth-promoting strains. Because the flower involves host–symbiont feedback, the selection of specific bacteria by the reproductive organs of angiosperms could be relevant for the modulation of fruit and seed production.
Leaves and flowers are colonized by diverse bacteria that impact plant fitness and evolution. Although the structure of these microbial communities is becoming well-characterized, various aspects of their environmental origin and selection by plants remain uncertain, such as the relative proportion of soilborne bacteria in phyllosphere communities. Here, to address this issue and to provide experimental support for bacteria being filtered by flowers, we conducted common-garden experiments outside and under gnotobiotic conditions. We grew
Arabidopsis thaliana in a soil substitute and added two microbial communities from natural soils. We estimated that at least 25% of the phyllosphere bacteria collected from the plants grown in the open environment were also detected in the controlled conditions, in which bacteria could reach leaves and flowers only from the soil. These taxa represented more than 40% of the communities based on amplicon sequencing. Unsupervised hierarchical clustering approaches supported the convergence of all floral microbiota, and 24 of the 28 bacteria responsible for this pattern belonged to the Burkholderiaceae family, which includes known plant pathogens and plant growth-promoting members. We anticipate that our study will foster future investigations regarding the routes used by soil microbes to reach leaves and flowers, the ubiquity of the environmental filtering of Burkholderiaceae across plant species and environments, and the potential functional effects of the accumulation of these bacteria in the reproductive organs of flowering plants.