首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system
  • 本地全文:下载
  • 作者:Xi Lu ; Shi Chen ; Chris P. Nielsen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:42
  • DOI:10.1073/pnas.2103471118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Solar photovoltaic power is gaining momentum as a solution to intertwined air pollution and climate challenges in China, driven by declining capital costs and increasing technical efficiencies. The dynamic spatial trajectory of cost-competitive and grid-compatible penetration potentials for solar power will be a critical determinant of the speed of energy system decarbonization in China. This study develops an integrated model to assess solar photovoltaic potentials and their cost competitiveness throughout 2020 to 2060 considering multiple spatiotemporal factors. We find that the cost competitiveness of solar power allows for pairing with storage capacity to supply 7.2 PWh of grid-compatible electricity, meeting 43.2% of China’s demand in 2060 at a price lower than 2.5 US cents/kWh. As the world’s largest CO 2 emitter, China’s ability to decarbonize its energy system strongly affects the prospect of achieving the 1.5 °C limit in global, average surface-temperature rise. Understanding technically feasible, cost-competitive, and grid-compatible solar photovoltaic (PV) power potentials spatiotemporally is critical for China’s future energy pathway. This study develops an integrated model to evaluate the spatiotemporal evolution of the technology-economic-grid PV potentials in China during 2020 to 2060 under the assumption of continued cost degression in line with the trends of the past decade. The model considers the spatialized technical constraints, up-to-date economic parameters, and dynamic hourly interactions with the power grid. In contrast to the PV production of 0.26 PWh in 2020, results suggest that China’s technical potential will increase from 99.2 PWh in 2020 to 146.1 PWh in 2060 along with technical advances, and the national average power price could decrease from 4.9 to 0.4 US cents/kWh during the same period. About 78.6% (79.7 PWh) of China’s technical potential will realize price parity to coal-fired power in 2021, with price parity achieved nationwide by 2023. The cost advantage of solar PV allows for coupling with storage to generate cost-competitive and grid-compatible electricity. The combined systems potentially could supply 7.2 PWh of grid-compatible electricity in 2060 to meet 43.2% of the country’s electricity demand at a price below 2.5 US cents/kWh. The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option.
  • 关键词:ensolar photovoltaic power;electricity potential;economic competitiveness;solar plus storage
国家哲学社会科学文献中心版权所有