首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules
  • 本地全文:下载
  • 作者:Rui Jing ; Jingtao Wang ; Jiangbing Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-01470-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:This study was to develop a radiomics nomogram mainly using wavelet features for identifying malignant and benign early-stage lung nodules for high-risk screening. A total of 116 patients with early-stage solitary pulmonary nodules (SPNs) (≤ 3 cm) were divided into a training set (N = 70) and a validation set (N = 46). Radiomics features were extracted from plain LDCT images of each patient. A radiomics signature was then constructed with the LASSO with the training set. Combined with independent risk factors, a radiomics nomogram was built with a multivariate logistic regression model. This radiomics signature, consisting of one original and nine wavelet features, achieved favorable predictive efficacy than Mayo Clinic Model. The radiomics nomogram with radiomics signature and age also showed good calibration and discrimination in the training set (AUC 0.9406; 95% CI 0.8831–0.9982) and the validation set (AUC 0.8454; 95% CI 0.7196–0.9712). The decision curve indicated the clinical usefulness of our nomogram. The presented radiomics nomogram shows favorable predictive accuracy for identifying malignant and benign lung nodules in early-stage patients and is much better than the Mayo Clinic Model.
国家哲学社会科学文献中心版权所有