摘要:An engineering calculation model is introduced for point-contact elastohydrodynamic lubrication analysis of spiral bevel gears. This model can analyze transient lubrication characteristics of spiral bevel gears. The influence of the angle between the lubricant entrainment and the minor axis of the contact ellipse is included in this model. The contact parameters of the spiral bevel gear are calculated, which will change with time during the meshing process. The variation of lubricant film thickness during the meshing process of spiral bevel gears is unraveled. Due to the influence of entrainment velocity, the oil film thickness at the out mesh side is smaller than that at the enter mesh side under the same contact force. It is evident that the higher the pressure is, the larger the contact area will be. Meanwhile, the thickness of the oil film is reduced, and the oil film distribution in the contact area is relatively uniform. Taking helicopter main transmission spiral bevel gears as an example, this study finally calculates the distribution characteristics of the oil film thickness of the spiral bevel gear, and solves the lubrication performance of the spiral bevel gear under different working conditions.