期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:39
DOI:10.1073/pnas.2025273118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Small and isolated populations have low genetic variation due to founding bottlenecks and genetic drift. Few empirical studies demonstrate visible phenotypic change associated with drift using genetic data in endangered species. We used genomic analyses of a captive tiger pedigree to identify the genetic basis for a rare trait, pseudomelanism, in tigers. Genome sequencing and extensive genotyping of noninvasive samples across tiger range revealed unique spatial presence of this allele in the Similipal Tiger Reserve, India. Population genetic analyses confirmed that Similipal is a small and isolated population. Simulations suggest that intense founding bottlenecks could result in the observed patterns, implicating drift. Our study highlights ongoing phenotypic evolution, potentially from human-induced fragmentation, in endangered large carnivore populations.
Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (
Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in
Transmembrane Aminopeptidase Q (
Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise F
ST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.