摘要:Microbial contamination is one of the major dreadful problems that raises hospitalization, morbidity and mortality rates globally, which subsequently obstructs socio-economic progress. The continuous misuse and overutilization of antibiotics participate mainly in the emergence of microbial resistance. To circumvent such a multidrug-resistance phenomenon, well-defined nanocomposite structures have recently been employed. In the current study, a facile, novel and cost-effective approach was applied to synthesize Ag@Ag
2O core–shell nanocomposites (NCs) via chemical method. Several techniques were used to determine the structural, morphological, and optical characteristics of the as-prepared NCs. XRD, Raman, FTIR, XPS and SAED analysis revealed a crystalline hybrid structure of Ag core and Ag
2O shell. Besides, SEM and HRTEM micrographs depicted spherical nanoparticles with size range of 19–60 nm. Additionally, zeta potential and fluorescence spectra illustrated aggregated nature of Ag@Ag
2O NCs by − 5.34 mV with fluorescence emission peak at 498 nm. Ag@Ag
2O NCs exhibited higher antimicrobial, antibiofilm, and algicidal activity in dose-dependent behavior. Interestingly, a remarkable mycocidal potency by 50 μg of Ag@Ag
2O NCs against
Candida albican; implying promising activity against COVID-19 white fungal post-infections. Through assessing cytotoxicity, Ag@Ag
2O NCs exhibited higher safety against Vero cells than bulk silver nitrate by more than 100-fold.