首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Fitting Compound Archimedean Copulas to Data for Modeling Electricity Demand
  • 本地全文:下载
  • 作者:Moshe Kelner ; Zinoviy Landsman ; Udi E.Makov
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2021
  • 卷号:10
  • 期号:5
  • 页码:20-26
  • 语种:English
  • 出版社:Canadian Center of Science and Education
  • 摘要:Modeling dependence between random variables is accomplished effectively by using copula functions. Practitioners often rely on the single parameter Archimedean family which contains a large number of functions, exhibiting a variety of dependence structures. In this work we propose the use of the multiple-parameter compound Archimedean family, which extends the original family and allows more elaborate dependence structures. In particular, we use a copula of this type to model the dependence structure between the minimum daily electricity demand and the maximum daily temperature. It is shown that the compound Archimedean copula enhances the flexibility of the dependence structure and provides a better fit to the data.
  • 关键词:compound archimedean copula;dependence structure;electricity demand;Kendall’s tau;Gini’s gamma
国家哲学社会科学文献中心版权所有