摘要:In this paper, in order to attain the maximum ergodic capacity and significantly increase the spectral efficiency of wireless communication systems, novel linear beamforming is proposed for dual-hop amplify-and-forward (AF) multi-relay networks. The linear beamforming is designed based on the maximization of the signal-to-interference-plus-noise ratio (SINR) and signal-to- leakage-and-noise ratio (SLNR). The channel state information (CSI) is used in applying this new design to multi-relay (MR) nodes between the source and relays as well as relays and destination. The beamforming optimization problem is solved by using the Fukunaga-Koontz Transform (FKT). The scheme can achieve intra-node array and distributed gains by using multiple antennas and multi-relays (MRs). The performance of the proposed scheme demonstrates that by considering interference mitigation criteria the ergodic capacity at a significant level is improved as compared to the conventional techniques. Therefore, the proposed techniques based on the maximization of the signal-to-interference-plus-noise ratio (SINR) and signal-to-leakage-and-noise ratio (SLNR) relay processing outperform other conventional techniques in case of a multi-relay dual-hop network in terms of ergodic.