首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:An Energy Balance Model Parameter Estimation with an Extended Kalman Filter
  • 本地全文:下载
  • 作者:Auralius Manurung ; Lisa Kristiana ; Dwi Aryanta
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:20
  • 页码:735-740
  • DOI:10.1016/j.ifacol.2021.11.259
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents modeling and parameter estimation of a thermal system, which is often nonlinear, with nonlinearities found in its parameters. As a result, it requires an additional online parameter estimation. In this paper, we implement an Extended Kalman Filter for modeling and parameter identification of such a device. The thermal device that we use is an educational device developed in-house. First, we derive the device’s mathematical model using a zero-order energy balance model as the template model. Next, we find the model’s best parameters by performing an optimization process. Finally, we implement an Extended Kalman Filter technique to accommodate the possibility that those parameters may change over time. Our experiments show that when we have reliable measurements and a reliable system model, the Kalman filtering technique can perform well as an online parameter estimator and act as a basis to build an adaptive model.
  • 关键词:KeywordsRecursive identificationprocess modelingidentificationembedded computer control systemsapplications
国家哲学社会科学文献中心版权所有