首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Optimization-based parameter identification of a coffee fermentation model using evolutionary algorithms ⁎
  • 本地全文:下载
  • 作者:Nadia Rosero ; Andrés Pantoja
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:20
  • 页码:681-686
  • DOI:10.1016/j.ifacol.2021.11.250
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents the parameter identification of a coffee fermentation model with different heuristic methods. A discrete-time linear model is proposed to relate dynamical reactions between relevant variables such as pH, glucose concentration, and lactic acid concentration. An optimization-based parameter identification is also proposed using three evolutionary algorithms:i)Particle Swarm Optimization (PSO),ii)Genetic Algorithms (GA), and iii)Differential Evolution (DE). These approaches are used to find the best fitting for experimental data. Results are compared in terms of cost function, curve fitting, solution dispersion, and convergence rate. The best results are obtained with PSO algorithm. The model can be used for monitoring, predict, and improve coffee quality for similar fermentation processes, coffee beans varieties, and agroecological conditions.
  • 关键词:KeywordsOptimization-based modelingcoffee fermentationparticle swarm optimizationgenetic algorithmsdifferential evolution
国家哲学社会科学文献中心版权所有