摘要:Many ecological studies rely on count data and involve manual counting of objects of interest, which is time-consuming and especially disadvantageous when time in the field or lab is limited. However, an increasing number of works uses digital imagery, which opens opportunities to automatise counting tasks. In this study, we use machine learning to automate counting objects of interest without the need to label individual objects. By leveraging already existing image-level annotations, this approach can also give value to historical data that were collected and annotated over longer time series (typical for many ecological studies), without the aim of deep learning applications. We demonstrate deep learning regression on two fundamentally different counting tasks: (i) daily growth rings from microscopic images of fish otolith (i.e., hearing stone) and (ii) hauled out seals from highly variable aerial imagery. In the otolith images, our deep learning-based regressor yields an
RMSE of 3.40 day-rings and an
\documentclass[12pt