首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:BioCPPNet: automatic bioacoustic source separation with deep neural networks
  • 本地全文:下载
  • 作者:Peter C. Bermant
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-02790-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We introduce the Bioacoustic Cocktail Party Problem Network (BioCPPNet), a lightweight, modular, and robust U-Net-based machine learning architecture optimized for bioacoustic source separation across diverse biological taxa. Employing learnable or handcrafted encoders, BioCPPNet operates directly on the raw acoustic mixture waveform containing overlapping vocalizations and separates the input waveform into estimates corresponding to the sources in the mixture. Predictions are compared to the reference ground truth waveforms by searching over the space of (output, target) source order permutations, and we train using an objective function motivated by perceptual audio quality. We apply BioCPPNet to several species with unique vocal behavior, including macaques, bottlenose dolphins, and Egyptian fruit bats, and we evaluate reconstruction quality of separated waveforms using the scale-invariant signal-to-distortion ratio (SI-SDR) and downstream identity classification accuracy. We consider mixtures with two or three concurrent conspecific vocalizers, and we examine separation performance in open and closed speaker scenarios. To our knowledge, this paper redefines the state-of-the-art in end-to-end single-channel bioacoustic source separation in a permutation-invariant regime across a heterogeneous set of non-human species. This study serves as a major step toward the deployment of bioacoustic source separation systems for processing substantial volumes of previously unusable data containing overlapping bioacoustic signals.
国家哲学社会科学文献中心版权所有