首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
  • 本地全文:下载
  • 作者:Christian Bergler ; Alexander Gebhard ; Jared R. Towers
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-02506-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg’s killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-running cetacean photo-identification datasets. However, data maintenance and analysis are extremely time and resource consuming. This study transfers the procedure of killer whale image identification into a fully automated, multi-stage, deep learning framework, entitled FIN-PRINT. It is composed of multiple sequentially ordered sub-components. FIN-PRINT is trained and evaluated on a dataset collected over an 8-year period (2011–2018) in the coastal waters off western North America, including 121,000 human-annotated identification images of Bigg’s killer whales. At first, object detection is performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 93.4% mean-average-precision (mAP). Second, all previously identified natural killer whale markings are extracted. The third step introduces a data enhancement mechanism by filtering between valid and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 95.2% accuracy. The fourth and final step involves multi-class individual recognition. When evaluated on the network test set, it achieved an accuracy of 92.5% with 97.2% top-3 unweighted accuracy (TUA) for the 100 most commonly photo-identified killer whales. Additionally, the method achieved an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 most common killer whales. The source code of FIN-PRINT can be adapted to other species and will be publicly available.
国家哲学社会科学文献中心版权所有