首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors
  • 本地全文:下载
  • 作者:Yang Liu ; Xin Zhang ; Guixin Yuan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:44
  • DOI:10.1073/pnas.2110751118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance In this study, we generated a mutant of the rice nucleotide-binding and leucine-rich repeat (NLR) immunity receptor RGA5 by engineering its heavy metal–associated domain that recognizes the noncorresponding Magnaporthe oryzae Avrs- and ToxB-like effector AvrPib and confers resistance in transgenic rice to the blast fungus isolates with AvrPib, which is known to trigger blast resistance in rice cultivars carrying the R gene Pib, albeit by unknown mechanisms. Thus, this work demonstrates that integrated domain-containing plant NLR receptors can be engineered to confer resistance to pathogens carrying avirulence effectors that trigger plant immunity by unknown mechanisms, thereby providing a practical approach for developing multilines and cultivars with broad race spectrum resistance. Plant nucleotide-binding and leucine-rich repeat (NLR) receptors recognize avirulence effectors directly through their integrated domains (IDs) or indirectly via the effector-targeted proteins. Previous studies have succeeded in generating designer NLR receptors with new recognition profiles by engineering IDs or targeted proteins based on prior knowledge of their interactions with the effectors. However, it is yet a challenge to design a new plant receptor capable of recognizing effectors that function by unknown mechanisms. Several rice NLR immune receptors, including RGA5, possess an integrated heavy metal–associated (HMA) domain that recognizes corresponding Magnaporthe oryzae Avrs and ToxB-like (MAX) effectors in the rice blast fungus. Here, we report a designer rice NLR receptor RGA5 HMA2 carrying an engineered, integrated HMA domain (RGA5-HMA2) that can recognize the noncorresponding MAX effector AvrPib and confers the RGA4-dependent resistance to the M. oryzae isolates expressing AvrPib, which originally triggers the Pib-mediated blast resistance via unknown mechanisms. The RGA5-HMA2 domain is contrived based on the high structural similarity of AvrPib with two MAX effectors, AVR-Pia and AVR1-CO39, recognized by cognate RGA5-HMA, the binding interface between AVR1-CO39 and RGA5-HMA, and the distinct surface charge of AvrPib and RAG5-HMA. This work demonstrates that rice NLR receptors with the HMA domain can be engineered to confer resistance to the M. oryzae isolates noncorresponding but structurally similar MAX effectors, which manifest cognate NLR receptor–mediated resistance with unknown mechanisms. Our study also provides a practical approach for developing rice multilines and broad race spectrum–resistant cultivars by introducing a series of engineered NLR receptors.
  • 关键词:NLR immune receptor; integrated domain; recognition; multilines; broad spectrum resistance
国家哲学社会科学文献中心版权所有