首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation
  • 本地全文:下载
  • 作者:Jacob R. Pecenka ; Laura L. Ingwell ; Rick E. Foster
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:44
  • DOI:10.1073/pnas.2108429118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Environmental damage from insecticide overuse is a major concern, particularly for conservation of “good” insects such as pollinators that ensure stable production of food crops like fruits and vegetables. However, insecticides are also necessary for farmers to manage “bad” insects (i.e., pests), and thus, a more holistic view of crop management needs to account for the proper balance between the beneficial and detrimental aspects of pesticides. Here, we used multiyear field experiments with a paired corn–watermelon cropping system to show that insecticide use can be dramatically reduced (by ∼95%) while maintaining or even increasing yields through the conservation of wild bees as crop pollinators. These data demonstrate that food production and ecosystem sustainability are not necessarily conflicting goals. Pest management practices in modern industrial agriculture have increasingly relied on insurance-based insecticides such as seed treatments that are poorly correlated with pest density or crop damage. This approach, combined with high invertebrate toxicity for newer products like neonicotinoids, makes it challenging to conserve beneficial insects and the services that they provide. We used a 4-y experiment using commercial-scale fields replicated across multiple sites in the midwestern United States to evaluate the consequences of adopting integrated pest management (IPM) using pest thresholds compared with standard conventional management (CM). To do so, we employed a systems approach that integrated coproduction of a regionally dominant row crop (corn) with a pollinator-dependent specialty crop (watermelon). Pest populations, pollination rates, crop yields, and system profitability were measured. Despite higher pest densities and/or damage in both crops, IPM-managed pests rarely reached economic thresholds, resulting in 95% lower insecticide use (97 versus 4 treatments in CM and IPM, respectively, across all sites, crops, and years). In IPM corn, the absence of a neonicotinoid seed treatment had no impact on yields, whereas IPM watermelon experienced a 129% increase in flower visitation rate by pollinators, resulting in 26% higher yields. The pollinator-enhancement effect under IPM management was mediated entirely by wild bees; foraging by managed honey bees was unaffected by treatments and, overall, did not correlate with crop yield. This proof-of-concept experiment mimicking on-farm practices illustrates that cropping systems in major agricultural commodities can be redesigned via IPM to exploit ecosystem services without compromising, and in some cases increasing, yields.
  • 关键词:integrated pest management; neonicotinoid seed treatments; crop pollination; ecological intensification
国家哲学社会科学文献中心版权所有