期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:47
DOI:10.1073/pnas.2103626118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Cellular membranes span a wide range of spatial dimensions, from the plasma membrane with a scale of microns to vesicles on the nanometer scale. The work presented here identifies a molecular mechanism, based on common features of cellular signaling enzymes, that causes the average enzymatic catalytic rate to exhibit reaction size dependency. This effect stems from stochastic variation, but the final results can be essentially deterministic. In competitive enzymatic reaction cycles, the final product can depend on the size of the reaction system. The simplicity of the mechanism suggests that size-dependent reaction rates may be widespread among signaling enzymes and thus enable reaction size to be an important factor in signal regulation at the membrane.
Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system—in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product—consisting of a specific lipid composition or Ras activity state—depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.