首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion
  • 本地全文:下载
  • 作者:Aftab Nadeem ; Raghavendra Nagampalli ; Eric Toh
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:47
  • DOI:10.1073/pnas.2111418118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Vibrio cholerae, responsible for outbreaks of cholera disease, is a highly motile organism by virtue of a single flagellum. We describe how the flagellum facilitates the secretion of three V. cholerae proteins encoded by a hitherto-unrecognized genomic island. The proteins MakA/B/E can form a tripartite toxin that lyses erythrocytes and is cytotoxic to cultured human cells. A structural basis for the cytolytic activity of the Mak proteins was obtained by X-ray crystallography. Flagellum-facilitated secretion ensuring spatially coordinated delivery of Mak proteins revealed a role for the V. cholerae flagellum considered of particular significance for the bacterial environmental persistence. Our findings will pave the way for the development of diagnostics and therapeutic strategies against pathogenic Vibrionaceae. The protein MakA was discovered as a motility-associated secreted toxin from Vibrio cholerae. Here, we show that MakA is part of a gene cluster encoding four additional proteins: MakB, MakC, MakD, and MakE. MakA, MakB, and MakE were readily detected in culture supernatants of wild-type V. cholerae, whereas secretion was very much reduced from a flagellum-deficient mutant. Crystal structures of MakA, MakB, and MakE revealed a structural relationship to a superfamily of bacterial pore-forming toxins. Expression of MakA/B/E in Escherichia coli resulted in toxicity toward Caenorhabditis elegans used as a predatory model organism. None of these Mak proteins alone or in pairwise combinations were cytolytic, but an equimolar mixture of MakA, MakB, and MakE acted as a tripartite cytolytic toxin in vitro, causing lysis of erythrocytes and cytotoxicity on cultured human colon carcinoma cells. Formation of oligomeric complexes on liposomes was observed by electron microscopy. Oligomer interaction with membranes was initiated by MakA membrane binding followed by MakB and MakE joining the assembly of a pore structure. A predicted membrane insertion domain of MakA was shown by site-directed mutagenesis to be essential for toxicity toward C. elegans. Bioinformatic analyses revealed that the makCDBAE gene cluster is present as a genomic island in the vast majority of sequenced genomes of V. cholerae and the fish pathogen Vibrio anguillarum. We suggest that the hitherto-unrecognized cytolytic MakA/B/E toxin can contribute to Vibrionaceae fitness and virulence potential in different host environments and organisms.
  • 关键词:Vibrio cholerae; tripartite toxin; crystal structure
国家哲学社会科学文献中心版权所有