首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins
  • 本地全文:下载
  • 作者:Devon Birdseye ; Laura A. de Boer ; Hua Bai
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:47
  • DOI:10.1073/pnas.2109332118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Heterosis (hybrid vigor) boosts the productivity and resilience of crops and livestock above the levels of both parents, yet its underlying mechanisms remain unknown. We analyzed expression patterns of proteins in maize hybrids and their inbred parents. Differences in several molecular machines and biochemical pathways were found and quantitatively assessed using a panel of 15 hybrids. Seedling leaf chloroplast ribosomal proteins were able to quantitatively infer levels of adult plant heterosis. Expression levels of biosynthetic enzymes for the stress hormone ethylene were reduced in hybrids, as was previously reported for the dicot Arabidopsis. Mutation of these genes in a maize inbred caused the proteome to resemble a hybrid. Repression of ethylene biosynthesis may be a conserved component of heterosis physiology. The use of hybrids is widespread in agriculture, yet the molecular basis for hybrid vigor (heterosis) remains obscure. To identify molecular components that may contribute to trait heterosis, we analyzed paired proteomic and transcriptomic data from seedling leaf and mature leaf blade tissues of maize hybrids and their inbred parents. Nuclear- and plastid-encoded subunits of complexes required for protein synthesis in the chloroplast and for the light reactions of photosynthesis were expressed above midparent and high-parent levels, respectively. Consistent with previous reports in Arabidopsis, ethylene biosynthetic enzymes were expressed below midparent levels in the hybrids, suggesting a conserved mechanism for heterosis between monocots and dicots. The ethylene biosynthesis mutant, acs2/acs6, largely phenocopied the hybrid proteome, indicating that a reduction in ethylene biosynthesis may mediate the differences between inbreds and their hybrids. To rank the relevance of expression differences to trait heterosis, we compared seedling leaf protein levels to the adult plant height of 15 hybrids. Hybrid/midparent expression ratios were most positively correlated with hybrid/midparent plant height ratios for the chloroplast ribosomal proteins. Our results show that increased expression of chloroplast ribosomal proteins in hybrid seedling leaves is mediated by reduced expression of ethylene biosynthetic enzymes and that the degree of their overexpression in seedlings can quantitatively predict adult trait heterosis.
  • 关键词:heterosis; hybrid vigor; proteomics; ethylene; maize
国家哲学社会科学文献中心版权所有