期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:47
DOI:10.1073/pnas.2103228118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Tension is the force-opposing stretch of lipid membranes. It controls cell functions involving membranes. Membranes rupture above a tension threshold, causing cell death if tension is not properly buffered. However, how cell membrane tension is quantitatively regulated is unknown because it is difficult to measure. Using a fluorescent membrane tension probe, we explored the coupling between membrane tension and cell volume changes during osmosis. This coupling is described by an equilibrium theory linking tension to folding and unfolding of the membrane. This coupling is nevertheless actively regulated by cell components such as the cytoskeleton, ion transporters, and mTOR pathways. Our results highlight that cell volume regulation and membrane tension homeostasis are independent from the regulation of their coupling.
During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR