首页    期刊浏览 2024年07月23日 星期二
登录注册

文章基本信息

  • 标题:Correlated diffusion in lipid bilayers
  • 本地全文:下载
  • 作者:Rafael L. Schoch ; Frank L. H. Brown ; Gilad Haran
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:48
  • DOI:10.1073/pnas.2113202118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Dynamic processes on membrane surfaces are essential for biological function. Traditionally, quantitative measurements of lipid/protein motion have been interpreted in the framework of membrane hydrodynamics. However, some recent single-molecule tracking studies have proven difficult to interpret via hydrodynamic arguments. Does this suggest a failure of hydrodynamic theory or simply highlight the dangers in attempting to extend hydrodynamic arguments down to molecular scales? Intermolecular correlations are superior to single-molecule observations for studying hydrodynamics due to the longer length scales involved. The current work reports dynamic pair correlations of lipids in model membranes. Submicron distance-dependent correlations are well resolved, and complementary numerical calculations indicate that hydrodynamic theory can predict membrane dynamics over distances of tens of nanometers and longer. Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.
  • 关键词:membrane hydrodynamics; Saffman–Delbrück model; single-molecule tracking
国家哲学社会科学文献中心版权所有