首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values
  • 本地全文:下载
  • 作者:Robert K.Nowicki ; Robert Seliga ; Dariusz Żelasko
  • 期刊名称:Journal of Artificial Intelligence and Soft Computing Research
  • 电子版ISSN:2083-2567
  • 出版年度:2021
  • 卷号:11
  • 期号:4
  • 页码:307-318
  • DOI:10.2478/jaiscr-2021-0018
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
  • 关键词:rough sets;support vector machines;fuzzy systems;neural networks
国家哲学社会科学文献中心版权所有