首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Gaussian Process based Model Predictive Control to address uncertain milling circuit dynamics
  • 本地全文:下载
  • 作者:Laurentz E. Olivier
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:21
  • 页码:1-6
  • DOI:10.1016/j.ifacol.2021.12.001
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractModel predictive control performance rests heavily on the accuracy of the available plant model. To address (possibly) time-variant model uncertainty, a nominal nonlinear state-space model is combined with an additive residual model that takes the form of a Gaussian process. With sufficient operational data the Gaussian process model is able to effectively describe the residual model error and reduce the overall prediction error for effective model predictive control. The efficacy of the method is illustrated using a milling circuit simulator.
  • 关键词:KeywordsGaussian processmillingmodel predictive controlmodel uncertaintyrun-of-mine ore
国家哲学社会科学文献中心版权所有