首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Data Classification Using Combination of Five Machine Learning Techniques
  • 本地全文:下载
  • 作者:Md. Habibur Rahman ; Jesmin Akhter ; Abu Sayed Md. Mostafizur Rahaman
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2021
  • 卷号:9
  • 期号:12
  • 页码:48-62
  • DOI:10.4236/jcc.2021.912004
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Data clustering plays a vital role in object identification. In real life we mainly use the concept in biometric identification and object detection. In this paper we use Fuzzy Weighted Rules, Fuzzy Inference System (FIS), Fuzzy C-Mean clustering (FCM), Support Vector Machine (SVM) and Artificial Neural Network (ANN) to distinguish three types of Iris data called Iris-Setosa, Iris-Versicolor and Iris-Virginica. Each class in the data table is identified by four-dimensional vector, where vectors are used as the input variable called: Sepal Length (SL), Sepal Width (SW), Petal Length (PL) and Petal Width (PW). The combination of five machine learning methods provides above 98% accuracy of class identification.
  • 关键词:Co-Variance of Fuzzy Rule;Objective Function;Surface Plot;Confusion Matrix;Scatterplot and Accuracy of Detection
国家哲学社会科学文献中心版权所有